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Out-of-Plane Solutions and Bifurcations of Submersibles in

Free Positive Buoyancy Ascent

Fotis A. Papoulias' and Ibrahim Aydin®

The problem of motion stability of submersible vehicles in free positive buoyancy ascent is analyzed.
Motion is allowed to occur in combined vertical and horizontal planes. Continuation and catastrophe
theory technigues are employed to trace all possible steady-state solutions in six degrees of freedom,
while local linearization reveals their stability properties. Vehicle geometric properties and control surface
deflections are used as the primary bifurcation parameters. it is shown that multiple solutions may exist
in the form of pitchfork bifurcation, solution separation, hysteresis, and teardrop branches. Regions in
parameter spaces are identified where extreme sensitivity of solutions to geometric properties and

hydrodynamic modeling is present.

Introduction

THE DYNAMIC response of a submarine under casualty con-
ditions constitutes a crucial, and frequently limiting, factor
in establishing the vehicle’s submerged operating envelope.
As basic casualty conditions in the context of this work, we
mean the loss of control surface and/or propulsion system
response, or a flooding casualty where the boat must either
be brought to the surface or stabilized to a new operating
depth. Of particular significance is the study of the ability
of the boat to recover from a control surface jam. There exist
several factors which determine the severity of such a sit-
uation as well as the recovery procedures: the initial con-
ditions (speed, depth, pitch angle, etc.) during the jam, the
actual control surface angles, reversing time and backing
power of the propulsion system, the ability to blow ballast,
and the time between recognition of casualty and initiation
of proper recovery procedures. In such a scenario, closed-loop
control is kept at a minimal level, and open-loop dynamics
become the primary source of evaluation of response quali-
ties. To this end, it is crucial that we have a clear under-
standing of the dynamics of the boat during a loss of pro-
pulsion situation.

A similar need arises in the case of free buoyancy ascent
or descent of an autonomous underwater vehicle. Such op-
erations arise frequently in order to dive or rise to the com-
manded depth while conserving power. The excess buoyancy
or weight is the primary means for propulsion in this case
and a limited control may be used in the form of predeter-
mined control surface deflections and/or ballast control. Such
flight paths are executed under minimal power and, in most
cases, in the absence of computer closed-loop control, in or-
der to conserve power. The only means of control authority
that we can have in our disposal are predictive capabilities
for the vehicle open-loop dynamics.

The traditional methods for establishing dynamic stability
of motion concentrate mainly on eigenvalue analysis during
small perturbations around nominal straight-line paths
(Clayton & Bishop 1982). Two indices are utilized, a stabil-
ity index G, for the vertical plane and G, for the horizontal
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plane (Roddy 1990). In terms of the slow-motion derivatives,
these indices are given by

MZ, + m)
G,=1—-—7——
Z, M, — xcgm)

NJ(Y,—-m)
Gh=1-—2T
YN, —xem)

Positive values for these indices, whose usage dates back to
the 1950’s, indicate motion stability in the corresponding
plane. The above two indices are very useful in design and
evaluation of response qualities under most ordinary ma-
neuvering scenarios. The underlying assumption in these
criteria is that during normal straight-line motions, the cou-
pling between horizontal and vertical plane motions is rel-
atively weak, and can be neglected. Although vortex shed-
ding and flow separation introduces a certain degree of
coupling, the above assumption has been proven quite useful
in design and analysis. However, for a high-speed fast-
maneuvering submarine operating at the extremes of her
submerged operating envelope, or during an emergency sit-
uation, the above assumption of uncoupled motions breaks
down. High-amplitude motions may take place in all six de-
grees of freedom, and the nonlinear interactions between the
various modes of motion become more pronounced. There-
fore, use of the simple G,, G, indices may lead to incorrect
conclusions, and we have to carefully consider the motion
characteristics allowing for coupling between horizontal and
vertical planes.

The implications of nonlinear effects and coupling are nu-
merous. In the case of roll motion, which is one of the most
critical responses, there is growing evidence of complicated
dynamics and chaotic response under certain excitations
(Falzarano et al 1992, Falzarano & Zhang 1993, Thompson
et al 1991, Virgin & Bishop 1988). In the case of submarine
motions, there is evidence of bifurcation phenomena and ex-
treme sensitivity of response to initial conditions and control
actions during emergency ascent scenarios such as recovery
from a dive plane jam. As motivation for the analysis that
follows we present in Fig. 1 typical simulation results using
a constant coefficient nonlinear maneuvering model. The time
simulation is in terms of vehicle roll angle ¢ versus time for
2% excess buoyancy with the buoyancy force located 1% of
the vehicle length forward of the center of gravity, —6 deg
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Fig. 1 Time history (¢,f) for 8 = 2%W, xgg = — 1%L, & = —5 deg, Zgs =
0.1 ft, and for different values of rudder angle

dive plane angle, and 0.1 ft (0.03 m) metacentric height. Four
different recovery actions are shown, all parametrized by the
applied rudder angle in degrees. It can be seen that although
zero rudder angle appears to bring the vehicle roll angle back
to zero in the shortest time, the response does not persist.
Small nonzero values for the rudder angle develop excessive
roll angles in a divergent way, while larger rudder angles
reduce the amount of roll. Clearly the vehicle effective rud-
der angle is largely affected by the amount of vorticity and
currents in the flow field, and its actual value cannot be
known exactly. Since situations like the one presented in the
graph should be avoided, we need to develop a mechanism
for assessing those regions in the parameter space where the
response cannot be simulated with confidence.

Stability in unpowered ascent has been studied mainly in
the vertical plane. In Booth (1977) the vehicle response was
distinguished into either a nearly vertical ascent or a pre-
dominantly forward motion. In Papoulias & McKinley (1994)
it was found that the above distinction is not always mean-
ingful as a result of the many parameters that affect the
problem; that is, it was established that the actual motion
is a combination of nearly vertical ascents and predomi-
nantly forward motions. This latter study maintained some
vertical plane restrictions, although it indicated the poten-
tial existence of pitchfork bifurcations which led to coupled
out-of-plane solutions. In this work we relax the require-

ment for vertical plane motions and we analyze the stability
properties of all possible steady states in six degrees of free-
dom. This is motivated by both numerical observations
(Papoulias & McKinley 1994) and experimental results (Booth
1977), where six-degrees-of-freedom motions were reported.
We maintain the assumption of unpowered ascent where the
only motion driving mechanism is the amount of excess
buoyancy. We employ a combination of singularity theory
(Golubitsky & Schaeffer 1985), bifurcation theory (Guck-
enheimer & Holmes 1983), and numerical continuation
(Seydel 1988) methods in order to capture all steady-state
solutions that are physically admitted by the coupled non-
linear equations of motion. The primary bifurcation param-
eters used are: amount and location of excess buoyancy, dive
plane and rudder deflection, and the metacentric height. So-
lution branching is shown to occur in various forms, includ-
ing single and multiply connected pitchfork bifurcations,
separation of solutions, hysteresis, and teardrop branches.
We summarize our results in the form of bifurcation graphs
which identify parameter regions with qualitatively differ-
ent asymptotic response characteristics.

For demonstration purposes, all computations in the pres-
ent work are performed for the Swimmer Delivery Vehicle
(SDV), a 17.4 ft (5.3 m) vehicle for which a complete set of
hydrodynamic and geometric properties is available (Smith
et al 1978). Unless otherwise specified, all results herein are
presented in dimensional form, linear dimensions in feet, ve-
locities in feet per second, angular deflections in degrees, and
time in seconds.

Problem formulation

Here, we present the equations of motion for the model
used in this work. A detailed analysis of steady-state solu-
tions in the vertical plane is undertaken in order to provide
us with the necessary information to initiate the six-degrees-
of-freedom continuation study.

Equations of motion

The six-degrees-of-freedom equations of motion for a sub-
marine in surge, sway, heave, roll, pitch, and yaw, respec-
tively, are (Smith et al 1978)

mlu — vr + wq — x6(q> + ) + ye(pg — P) + zg(pr + ¢)]
=Xg+Xp+Xe 1)

Nomenclature
a = angle of attack (p,g,r) = roll, pitch, and yaw rates, re- Xy = surge force due to hydrody-
b(x) = local beam of the hull spectively namics
B= angle of drift (u,v,w) = surge, sway, and heave ve- Xw = surge force due to weight and
B = vehicle buoyancy locities, respectively buoyancy
3s = excess buoyancy, B - W W = vehicle weight (X,Y,Z) = surge, sway, and heave forces,
8, = bow plane deflection respectively

3, = rudder angle deflection
. = stern plane deflection
h(x) = local height of hull
I, = vehicle mass moment of in-
ertia around x-axis
(K,M,N) =roll, pitch, and yaw mo-
ments, respectively
L = vehicle length

m = vehicle mass puts
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xp = longitudinal position of cen-
ter of buoyancy

1 = longitudinal position of cen-
ter of gravity

xcs = longitudinal center of grav-
ity /buoyancy separation,
Xg T Xp

X, = surge force due to control in-

y¢ = athwartship location of cen-
ter of gravity
zp = vertical position of center of
buoyancy
z¢ = vertical position of center of
gravity
2gs = metacentric height, zo — 23
($,0,¥) = roll, pitch, and yaw Euler
angles, respectively
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mlv + ur — wp + x6(pq + ©) — yo(p* + 1) + z5(qr — p)]
=Yy + Yy +Ye (2)

mlw — ug + vp + x6(pr — §) + yelgr + p) — z6(p* + ¢
=Zy+Zyw+Zcs 3)

Lp+ U, ~ L)gr + Ly(pr — §) — L(q" = r*) = L.(pq + 7)
+ mlyg(h — uq + vp) — 266 + ur — wp)l = Ky + Ky + K¢
4)

L+, — Lpr = Lqr + p) + L(pq — P + L(p" - )
— mlxg(h — uq + vp) — zg(u — vr + wq)l = My + My + M¢
(5)

Lr+{,-L)pg - I,cy(p2 - - L.(pr+¢)+ L{qr—p)

+ mlxg(® + ur — wp) — ye{tt. — vr + wg)l = Ny + Ny + N¢
(6)

where the left-hand sides represent inertial forces and mo-
ments and the right-hand sides model the external forces.
Subscript H reflects hydrodynamic contributions, W buoy-
ancy and weight effects, C forces arising from control surface
(rudders, dive planes, and bow planes) deflections, and the
rest of the symbols are based on standard notation and ex-
plained in the Nomenclature.

Hydrostatic restoring forces and moments are due to the
vehicle weight W and buoyancy B, and are given by

Xw=—-(W-PB)sin8 N
Yy =(W - B)cossin ¢ 8
Zw = (W — B)cos 0 cos ¢ 9
Ky = (yoW — ygB) cos B cos & — (zgW — zzB) cos sind  (10)
My = —(xgW — x5B) cos 0 cos ¢ — (2,W — 23B) sin 6 11)
Ny = (xcW — x5B) cos 8 sin & + (ygW — yzB) sin 6 12)

Forces and moments due to control surface deflections are
reflected as added drag in surge, while in sway, heave, pitch,
and yaw they are directly proportional to control surface de-
flection

Xo = uq(X 505 + X5, 8) + X urd, + X5 uvd,

+ uw(Xw;,sﬁs + XwaSb) + uZ(X;,sast + Xabsbai + Xﬁ,ﬁrsf)

(13)
Yo = Y, 1’8, (14)
Ze = u¥(Zs 3, + Z5,9) (15)
Kc=0 (16)
M = WMy 3, + My,3,) an
N¢ = Nsu?, (18)

Usually, control surface deflections are kept intentionally
small, and the linearity assumption in (13) through (18)
remains valid. This, of course, may not be the case in
emergency scenarios and the equations should then be
modified to allow for possible control surface stall. Such mod-
ifications are not included in the present model since they
do not affect the qualitative features of the results, nor
do they limit the applicability of the analysis techniques
presented.
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One of the greatest challenges in the equations of motion,
(1) through (6), is the development of rational expressions
for the hydrodynamic forces. The difficulty can be traced to
the complex flow around a maneuvering submarine. Force
and moment prediction for these flows requires accurate
modeling of detailed flow phenomena such as appendage root
and tip vortices, bluff-body cross-flow separation, and thick
possibly separated boundary layers. These disturbances in-
terfere with a submarine’s control appendages and/or pro-
peller, and result in responses that are often very difficult
to predict. One of the most efficient computational tools ca-
pable of modeling the required flow phenomena are Reyn-
olds averaged Navier-Stokes methods (Chen & Korpus 1992).
Potential flow and/or boundary-layer theories cannot re-
solve the essential details of vorticity, while parabolized
Navier-Stokes codes cannot handle the problem of vortex
separation. In addition, one has to include what may well
be the most important maneuvering influence of all, namely,
viscous dominated propulsor/hull interaction forces. Unfor-
tunately, Reynolds averaged Navier-Stockes analyses are
computationally very intensive. Therefore, they can be ef-
fectively applied only for a specific numerical simulation re-
sulting in a single trajectory prediction. Given the fact that
numerical simulation results should be used with caution as
they have confirmatory rather than predictive value, and the
numerous combinations of initial conditions and parameter
variations, one realizes that a different mechanism must be
employed in order to fully and reliably establish the bound-
aries of the submerged operational envelope. This require-
ment introduces the other, equally great challenge-—namely,
the study of the open-loop dynamics of the equations given
a particular hydrodynamic modeling. In this work we em-
ploy a traditional semi-empirical constant coefficient de-
scription. The main reason for this selection is the avail-
ability of data. Furthermore, the thrust of this work is on
the nonlinear dynamics issues and not on hydrodynamic flow
description. Realizing the well-known limitations of a con-
stant coefficient hydrodynamic model, we have to establish
the robustness of our results in the presence of uncertainties
and inaccuracies in the values of hydrodynamic, geometric,
and control surface deflections in our model. The most effi-
cient mechanism for this is the use of recently developed
methods in bifurcation and singularity theory. If we
are able to recognize the bifurcation phenomena of the
problem in terms of the universal unfoldings of known bifur-
cations, then these models will persist under finite perturba-
tions of the parameters in the system (Golubitsky & Schaeffer
1985). The ultimate goal, of course, is the development of
a framework for studying the nonlinear dynamics of a
vehicle coupled with rational, nonempirical hydrodynamic
computations.

Using a constant coefficient model, the hydrodynamic forces
and moments are expressed as polynomial functions of the
translational and rotational velocities of the vehicle with re-
spect to the water

Xy =X,o0° + Xpu@? + X, + Xppr + Xt + X, 0wq
+ Xpop + X,or + X, 00 + X, ow? — Cpotid (19)
Yu=Yp+ Y F+ Ypqt+Y,qr+ Yo+ Yup
+ Yur + Y, g + Y,wp + Y, wr + Yuv + Y, 0w
1
— Ep f [Cphlo)(v + xr)?
+ Cpb)w — xq)’] (z;é)r ) 20
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Zy=24G+ Zppp” + Zppr + 2,70 + Zytb + Zuq
1
+ Zyup + Zor + Zuw + Z,,0° — 2P

w — xq
Ucf(x)
Ky =Kyp + K7+ Kpypg + Kypqr + Ko + Kpup

f [Cp,h@)( + xr)* + Cp,b@(w — 2¢)*] dx (21)

+ Kur + K, vqg + K,,wp + K,,ur + Kuv + K, ow  (22)

My = My + Mp,p* + M, pr + M,,r* + M + Moug

1
+ M,up + M,ur + Myuw + M,0° + 2P f [Cphx)v + xr)?

(w — xq)

+ CDZb(x)(w - xq)z] mxdx (23)
Ny = N,p + Ni + Npgpg + Nogqr + Nyo + Nyup
+ Nur + N,vg + Nywp + Nywr + Nuv + Nyow
1
- 5P f [Cp h(x) (v + xr)
< Copw — 27 D vax 24)

Ucf‘ (x )

The cross-flow integral terms are integrated over the length
of the body and they model quadratic drag forces. The cross-
flow velocity U, is

Uys= [+ xr)? + (w — 291" (25)

The hydrodynamic coefficients in the above equations are
assumed to be independent of vehicle speed, which is a rel-
atively accurate approximation. A more important assump-
tion is that they are also assumed to be constant throughout
the range of vehicle angles of drift and attack. Ordinary ma-
neuvering models are usually validated for angles of attack
between *+15 deg. For higher angles, the cross-flow drag terms
Cp, and Cp, dominate the response and they are functions
of the side slip angle or angle of attack. For this reason, the
results will have to be carefully interpreted for large angles
of attack. Incorporation of angle-of-attack dependence, how-
ever, should not affect significantly the qualitative bifur-
cation characteristics of our results. The reason for this is
that universal bifurcation unfoldings are robust with regard
to parameter variations and model uncertainties.

Finally, the kinematic equations express the rates of change
of the Euler angles (¢,0,0) in terms of the vehicle orientation
and angular velocities as in

b=p+gsindtanb + rcos$tan b (26)

f=qcosd —rsind 27N

) sin coS

¥=q 0 ¢ (28)
cos 0 cos 0

We assume that propulsion is inoperative and the vehicle
propeller is rotating freely. The driving mechanism for ve-
hicle motions is the amount and location of excess buoyancy.
The problem then is to establish the dynamics of the system
in such a condition.

Vertical plane solutions
Steady-state solutions are characterized by the conditions
u=v=w=p:q=,‘-=¢.—_g=0 (29)
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Substituting (29) into the equations of motion yields a highly
nonlinear coupled system of eight equations in the eight un-
known state variables, u, v, w, p, q, 7, ¢, and 6 at steady
state. Such a system may admit, of course, a multitude of
solutions depending on the initial conditions. In order to ob-
tain the necessary initial estimates for the six-degrees-of-
freedom continuation analysis, we make the additional as-
sumption { = 0 at steady state. This forces a constant yaw
angle at equilibrium and, as a result, it restricts the nomi-
nal equilibrium set in the vertical plane. The two necessary,
but not sufficient, conditions for steady-state motion to be
restricted in the vertical plane are (Papoulias & McKinley
1994) rudder at zero:

=0

and center-of-gravity /buoyancy “symmetry” with respect to
the centerplane:

YW —ygB =0

The steady-state conditions (29) then reduce to a single
equation for the dimensionless heave velocity, x = w/u

x| + B+ A+ =0 (30
where we have assumed that only positive solutions in u are
admitted. Once equation (30) is solved, the remaining state
variables are single-valued functions of x (Papoulias &
McKinley 1994). The coefficients B, \, and « of (30) are given
in terms of our physical parameters as

B— 2.0
CDZAw(px + anB)
A= M35 — pZy + DX, Bs + XousyBs)

Cp,ALp, + x48p)

Bp(M 5 + M;,8,) + Pz(Xssasaf + Xsbabag = Cpo) + pulZ5,8, + Z,0)
a =
CDZAw(px + x405)

(31

where

A, = f b(x)dx
A s
X4 = A xb(x)

Dx = xggW — x58p
P: = 2ggW — 2zzdp
Xgp = Xg — XB
2GB = 2g — ZB
83 =B-W

and b(x) is the local beam of the hull.
Analysis of the solution set of (30) in terms of singularity
theory can be accomplished by rewriting it as

xle| + o + A8 + (otg + 01 + wpd?) + B =0
or Gix,d,p1p2) =0 (32)

where we have adopted the dive plane angle & as our pri-
mary bifurcation parameter. The remaining variables in (32)
are expressed in terms of the new unfolding parameters
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5g

=— 33)
i Dx + anB (
D2
=— 34)
pe Px + xABB (
where
_— Zw Mw + xAZw
T CoAe | CoAL
Xwﬁs + Xwﬁbaﬁ
1= T o . P2
Cp,A,
= — Cpo
0 CoyAu D2
Zy, + Zs0s M+ Myos + 2425, + Zs,05)
Q= — + IS
CDZAw CDZAw
o = Xsss, + Xa,,ab(lg
2 —CD__Z A, D2
B _ wa
CDZ Awp2
and
3p
Ay = B_S

is the bow plane to dive plane ratio. The purpose of the anal-
ysis in this section is to classify the geometry of the solu-
tions of (32) for any physically realizable range of variations
of the parameters 9, p;, and p,.

Since we seek to characterize vertical plane solutions be-
fore we attempt six-degrees-of-freedom computations, we start
first with the degenerate case when p, = 0. The physical
significance of the degeneracy condition p, = 0 is simply 2,W
= z3B. In such a case, p, = 0, and (32) becomes

ax| +Ax + o8 =0 or gxdp)=0 35)
Equation (35) represents a typical hysteresis bifurcation.
Hysteresis occurs when g = g, = g = 0, which implies that
Mo = 0. When A, > 0, g, # 0 always and the solution set of

= 0 is a single-valued function in 3. Onset of hysteresis
occurs for Ay = 0, which results in

Mw + xBZw
X6B = T 5w, 9B

W (36)
When A\, < 0 a hysteresis loop exists for a certain range of
5. This is computed from g = g, = 0, or
A — 160282 =0 (37
Between the two values of 3 specified by (37), equation (35)
has three solutions, two of which are stable and the central
one unstable. Equation (37) represents a cuspoid curve sym-
metric with respect to the a;8 = 0 axis with the cusp located
at the origin. For negative A, and for values of «;d located
inside the cusp (37), equation (35) admits three solutions in
x. The above results are presented graphically in Fig. 2.
The hysteresis bifurcation (35) does not persist when p, #
0. In such a case, the generic solution set is described by
(32), which takes the form of the winged cusp singularity
(Golubitsky & Schaeffer 1985). The set of the hysteresis points
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Fig. 2 Degenerate hysteresis solution set and cusp curve

of (32), %, can be computed from the simultaneous solution
of

G=G.=G..=0 (38)

Explicit determination of the derivatives in (38) yields the
condition

(39

which describes the hysteresis set in a ( p,,p,) parameter space.
Multiple solutions of (32) are generated along the bifurca-
tion set B which is computed by solving

(10)\% - (Xl)\o)\l + (12)\% =0

G=G,=G;=0 (40)
This results in the following cusplike curve
[sgn(x) + Blla; + 2058)% — Ailho + Md)a; + 2a28)
+ Mlog + 0gd + a8 =0 (4D

where

_ 2[Sgn(x) + B](Xl - )\0)\1
A2 — dayfsgnix) + Bl

and sgn(x) = +1 if x > 0, and sgn(x) = —1 if x < 0. De-
pending on the number of physical parameters that are em-
ployed in a particular problem, equations (39) and (41) de-
seribe curves or higher dimensionality surfaces in the
appropriate parameter space. Schematically, this is repre-
sented in Fig. 3 along with typical shapes of solution sets x
versus & for various parameter domains. Actual solution sets
of (32) for \; = ag = a; = p = 0, ap = 1, and different values
of Ay are presented in Fig. 4.

Typical solution sets for the SDV and for physically re-
alizable ranges of the parameters produce graphs that are
subsets, in a qualitative sense, of Figs. 3 and 4 (Papoulias
& McKinley 1994). The practical implications of the results
of this section is that they provide us with a complete de-
scription of the geometry of all possible steady-state solu-
tions in the vertical plane. Equipped with such a capability,
we can now proceed with the analysis of out-of-plane solu-
tions using numerical continuation and singularity theory
methods.

Out-of-plane solutions

The in-plane solutions studied in the previous section are
valid only under the prescribed symmetry conditions 5, = 0
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Fig. 3 Persistent perturbations of winged cusp singularity

and yoW — ypB = 0. As a result they are quite nonpersis-
tent, and small asymmetric perturbations can easily perturb
them into general out-of-plane motions. The latter could also
be observed even under the above symmetric conditions both
in experiments (Booth 1977) and simulations (McKinley 1991).
General out-of-plane solutions can be computed by solving
the following system of six coupled algebraic equations in
the six unknowns u, v, w, ¢, 0, and :

ml—vr + wq — x6(q®> + ) + yepq + zapr]

=Xyt Xyt X (42)
mlur — wp + xgpq — yo(p* + rP) + 25q7]
=Yy+Yyw+Y, (43)
ml-wgq + vp + xgpr + yeqr — zG(p2 + qz)]
=ZytZw+Zc (44)
(I, — L)gr + Lypr — L(g" = ) — L.pq
+ mlyg(—uq + vp) — zglur — wp)l = Ky + Ky + Ko (45)
€ = Lpr — Lygr + L.pg + L(p* = r)
—mlxg(—ug + vp) — 2¢(—vr+ w@)l =My + My + M (46)
d, — 19pq — Ly(p" = ") — Lopr + Lugr
+ mlxg(ur — wp) — yo(—vr + wg)l = Ng + Ny + No (47)
0.6 T T T T T T T —r
0.4} _05 4
0.2 ‘ :

-1

-05 -04 -03 -0.1 0 0.1 0.2 0.3 0.4 0.5

Fig. 4 Solution set x versus 8 for Ay = ag = @, =B = 0, oz = 1, and
different values of A,
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The angular velocities p, g, and r in (42) through (47) are
functions of §, &, and 8 and are obtained from (26) through
(27) by substituting é = 6 = 0:

p=—{sinb
g = ysin ¢ cos §

r = cos ¢ cos 8 (48)
It should be mentioned that we explicitly allow s # 0 so that
motion takes place in six degrees of freedom. Substitution of
U = 0 in (48) yields p = ¢ = r = 0, and equations (42) to
(47) then produce the vertical plane solutions of the previous
section.

The challenge in solving (42) through (47) is to ensure that
all meaningful solutions are computed for a given physically
realizable range of variation of the parameters for which the
model is valid. To this end, we utilized the following three-
stage approach:

1. The analytical results for vertical plane motions are
used as initial approximations for the more general case of
six-degrees-of-freedom motions. Additional information is
provided through a limited set of carefully selected numer-
ical integrations in cases where loss of stability in the ver-
tical plane is detected.

2. Stability analysis of vertical plane solutions identifies
parameter values where out-of-plane solution branching may
occur. Detailed local search in the neighborhood of these
critical parameter values is then initiated in order to obtain
initial approximations for these out-of-plane motions.

3. In cases where the prescribed symmetry conditions, 8,
= 0 and yoW — ygB = 0, are not satisfied, an incremental
technique is utilized. First, the vertical plane solution is ob-
tained. The asymmetry condition is then slightly introduced
and the new out-of-plane solution is computed using the pre-
vious solution as initial approximation. The process is re-
peated until the full asymmetry condition is applied.

Combination of the above three steps assures that all
meaningful solutions are captured. The actual numerical ve-
hicle which performs the indicated computations in the above
organizational scheme is continuation (Seydel 1988). The
principles of continuation are based on homotropy tech-
niques where a problem is embedded into a larger class of
problems which are parametrized by a single distinguishing
parameter. This class is then solved by systematically vary-
ing the parameter within a specified range using first a pre-
dictor and then a corrector algorithm, as is schematically
depicted in Fig. 5. The primary advantage of continuation
is that it can easily trace solution branches through bifur-
cation and turning points. It should be pointed out however,
that we were able to reproduce the continuation results by
using standard IMSL (International Mathematical and Sta-
tistical Libraries) nonlinear solvers; the disadvantage is that

solution curve

solution, =

parameter, A

Fig. 5 Principles of continuation

JOURNAL OF SHIP RESEARCH



a simple step-through approach breaks down when a turn-
ing point is encountered.

Although the steady-state analysis described above can
compute all possible steady-state solutions, it gives no in-
dication as to which of the solutions are stable. Dynamic sta-
bility of the equations of motion can be easily assessed once
a steady-state solution has been found. This is accomplished
by linearization (Guckenheimer & Holmes 1983) in the
neighborhood of the desired solution. The eigenvalues of the
Jacobian matrix of the first partial derivatives of our non-
linear vector field evaluated at the nominal point are com-
puted. If all eigenvalues have negative real parts, the in-
dicated steady-state solution is asymptotically stable, while
if at least one eigenvalue has a positive real part, the nom-
inal solution is unstable. In the following section we con-
centrate our attention on physically meaningful solutions,
and attempt to classify those solutions that are either stable
or perturb into stable steady states.

Steady-state solutions

In this section we present in a systematic way typical
steady-state results with variations in the dive plane angle
3., rudder angle 3,, amount of excess buoyancy 3z, location
of excess buoyancy xgp, and metacentric height z5p. The pri-
mary conclusion of this section is that loss of stability occurs
in the form of a multiparameter pitchfork bifurcation. Rec-
ognition of this bifurcation is accomplished by suitable pro-
jections on two-dimensional parameter planes discussed below.

Variations in §,: the pitchfork and separation

Extensive computations in the vertical plane reported in
Papoulias & McKinley (1994) suggest that there exists a
certain combination of the parameters (3,,xgz) where the in-
plane solution becomes unstable as a result of one real ei-
genvalue of the linearized system matrix crossing zero. A
systematic numerical search employing the continuation
principles described in the previous section revealed the ex-
istence of a generic pitchfork bifurcation. Typical results are
presented in Figs. 6 and 7, where we show the drift angle p
and angle of attack «a versus 3, for different values of the
rudder angle 3,, all in degrees. For these results we used g
= 29%W, 265 = 0.1 ft, and xgp = —1%L. Results for different
parameter values are qualitatively similar to the results
presented here. Stable (S) and unstable (U) solutions are in-
dicated on the graphs. It should be mentioned that the vastly
different behavior for 3, < 0 and 8, > 0 is due to the negative

-10 -5 0 5 10
5,

Fig. 6 Angle of drift versus 3, for different values of &, (deg)
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Fig. 7 Angle of attack versus 3, for different values of &, (deg)

value of xgpg, i.e., center of buoyancy forward of the center
of gravity. The pitchfork bifurcation occurs generically in
nonlinear dynamical systems where, besides the zero cross-
ing real eigenvalue condition, a reflectional symmetry x —
—x of the vector field exists (Guckenheimer & Holmes 1983).
Since for 8, = 0 our system is clearly symmetric with respect
to the horizontal plane variables v, r, p, and ¢, the occur-
rence of the pitchfork follows. At the critical point of bifur-
cation, the stability of the trivial equilibrium changes, and
a new pair of equilibria related by the symmetry appears to
one side of the critical point in the parameter space, as shown
in Fig. 6. The behavior of all horizontal plane variables is
qualitatively similar to that of the drift angle p. The nom-
inal in-plane solution B = 0 becomes unstable at a certain
value of 3,, and a pair of symmetric out-of-plane solutions
# 0 appears. These solutions are locally stable. For nonzero
values of 3, the reflectional symmetry exhibited by the
equations is destroyed, and the pitchfork bifurcation as-
sumes its persistent perturbed form demonstrated in the fig-
ure. The bifurcation point where multiple solutions are gen-
erated moves now to a lower value of 3, as 8, is increased in
absolute value. The two outer solutions are stable while the
inner solution is unstable. This is known as the saddle-node
bifurcation since at the bifurcation point, one stable equi-
librium (a node) coalesces with an unstable one (a saddle),
resulting in their mutual destruction. Negative values of 8,
produce steady-state solutions that are simply reflected with
respect to the B = 0 axis. Vertical plane results are shown
in Fig. 7 in terms of the angle of attack «. Since the vertical
plane variables u, w, g, and 8 are, for 3, = 0, even functions
of the horizontal plane variables, the (a,3,) diagram exhibits
a form of solution separation and does not distinguish be-
tween port and starboard out-of-plane motions. For nonzero
3, the results are perturbed as expected. As a final obser-
vation, it can be seen that the results shown in the previous
two figures involve quite small angles of drift and attack,
which means that the constant coefficient hydrodynamic
model remains valid.
This pitchfork bifurcation can be qualitatively described
by the one-parameter family
faN) =2+ A+ vy (49)
where x signifies any one of the horizontal plane variables
v, 1, p, and &. The primary bifurcation parameter is X, which
physically corresponds to the dive plane angle 3, through some
continuous nonlinear transformation. The rudder angle 5, is
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Fig. 8 Schematic diagrams of pitchfork and separation bifurcation

mapped via a one-to-one transformation to the mathemati-
cal unfolding parameter y. Symbolically, we can represent
this by writing

85— A, and d,— v (50)
For the unperturbed problem, y = 0, we can see that f(x,\)
= 0 admits only one solution, x = 0, for A > 0 and three
solutions, x = 0 and x = =\/—\, for A < 0. Solution sets
(x,\) for zero and nonzero values of y are shown in Fig. 8
where the qualitative similarities with the actual results of
Fig. 6 are evident; namely, there exists a critical point where
the primary solution branch loses its stability and it bifur-
cates into two stable out-of-plane branches. In case that an-
other variable in the system, y, is an even function of x, say
y = ||, we get the separation solution diagrams also shown
in Fig. 8. Physically, y corresponds to our vertical plane state
variables, as is evident from the similarities between Figs.
8 and 7.

With the aid of the pitchfork bifurcation diagrams we can
explain the pathological simulation results presented in Fig.
1. Figure 9 presents the steady-state roll angle ¢ versus §,
with 8, as the parameter. An interesting behavior is exhib-
ited near the bifurcation point for small values of §,. The

30 ™ T

Fig. 9 Roll angle versus &, for different values of &, (deg)
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Fig. 10 Pitch angle versus &, for different values of 8, (deg)

solutions in ¢ diverge away from their zero values and are
attracted by the complementary solutions that are located
close to & = w. It appears therefore that the exact solution
set of ¢ is very sensitive in this range to the precise values
of the parameters used in the model as well as to the ex-
ternal disturbances. Any results obtained by numerical sim-
ulations of this model in such a range of parameters should
be viewed with extreme caution. This is true for small val-
ues of 3, while larger values of rudder angle result in steady-
state roll angles that are located “close” to zero throughout
the range of §,. Therefore, for a certain band of 3, around
—5 deg, smaller rudder angles result in larger angles of roll
and vice versa. The situation is, of course, reversed for most
of the range of 3,, as expected.

Figure 10 presents results in terms of the pitch angle 6
versus 3, for different values of .. The resulting angles of
attack were very small throughout the range of bifurcation
phenomena in this and all similar figures of this section.
Both steady-state solutions, 6 and its complementary = — 6,
are shown. Inverted pendulum stabilization can be seen to
occur for values of 3 less than approximately —5 deg. The
results of Fig. 10 demonstrate that, in certain cases, the in-
verted pendulum stabilization studied in Papoulias &
McKinley (1994) is highly degenerate as it applies only for
3, = 0. Small nonzero rudder angles cause solution veering
instead of solution crossing, and as a result the steady-state
pitch angle is always less than 90 deg. This is of course spe-
cific to these particular results; other cases of inverted pen-
dulum stabilization are shown to persist even under the
asymmetry generated by nonzero rudder angles (Aydin 1993).

Variations in 5,: hysteresis branches and teardrops

As Figs. 6 through 10 demonstrate, there exists a certain
range of the parameters 8, and 8, such that the number of
steady-state solutions changes from one to three. This effect
can be seen more clearly by admitting 8, as our primary con-
tinuation parameter and 8, as our perturbation parameter.
Typical results in terms of the angular velocity in yaw, r,
are shown in Fig. 11 and in terms of the angle of attack in
Fig. 12. It can be seen that for a certain range of §, the so-
lution set is a single-valued function of r or o for the entire
range of 3,. Beyond a certain value of 3,, however, there ex-
ists a range of 8, where the solution set is a triple-valued
function in 3,. Of the three solutions, the two outer are sta-
ble while the inner is unstable. This is a typical hysteresis
diagram, and discontinuous jumps in the steady-state solu-
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Fig. 11 Yaw angular velocity (rad/sec) versus 8, (deg) for different values of
3, (deg)

tion structure can be experienced in practice upon continu-
ous variations of the rudder angle.
Hysteresis bifurcations can be described by a simple model
similar to (49)
fx\) =2+ yx + A (51)
with the exception that the roles of A and vy are inter-
changed:

8, —A, and §,— vy (52)
In Fig. 13 we plot x versus the primary bifurcation param-
eter A for different values of the unfolding parameter . Again,
it can be seen that the simple model captures the essential
structure of the solution set very well. Typical hysteresis
diagrams develop for the horizontal plane variables, whereas
the vertical plane variables are even functions in x and they
exhibit typical structures in the shape of teardrops as seen
in the figures. For certain ranges of the parameters (\,y) or,
equivalently, (3,,3,), a closed branch of additional solutions
in a vertical plane variable is generated and is being shed
off the primary solution branch as the parameters move far-

ther away from the bifurcation point.

-20 -15 -10 -5 [} 5 10 15 20

Fig. 12 Angle of attack versus 3, for different values of 3, (deg)
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Fig. 13 Schematic diagrams of hysteresis and teardrop bifurcation

Variations in 8,: the terminal pitchfork

A plot of the steady-state surge velocity u, with the amount
of excess buoyancy 85 as the primary bifurcation parameter,
is shown in Fig. 14. The value of the rudder angle, 3,, is kept
at zero for these results, which means that we are studying
symmetric solutions. The perturbation parameter is the dive
plane angle 8,, while we keep zgs = 0.1 ft and xgs = —1%L.
We observe the following qualitative features of the results:

1. For 8, = 0 there exist two in-plane solutions in . One
is of relatively low value and is unstable. The other has a
higher value and is the stable solution.

2. This distinction between a stable predominantly for-
ward motion and an unstable nearly vertical ascent becomes
more pronounced as the dive plane angle increases to -5
deg, but it becomes less pronounced as 8, is further increased
to —20 deg.

3. For 8, = —20 the predominantly forward motion loses
its stability before it coalesces with the nearly vertical as-
cent, exhibiting a typical solution separation with a bifur-
cation into out-of-plane motions.

We will refer to the particular pitchfork behavior shown
in Fig. 14 as the terminal pitchfork. The reason for this ter-

14

] 0.5 1 1.5 2 2.5 3

bg

Fig. 14 Surge velocity (ft/sec) versus excess buoyancy (%W) for &, = 0 and
different values of 3, (deg)
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Fig. 15 Surge velocity (ft/sec) versus excess buoyancy (%W) for 8, = —20
and different vaiues of 8, (deg)

minology is the fact that depending on the value of §,, there
exists a certain value of 83 where the primary in-plane so-
lution branch disappears. The secondary out-of-plane solu-
tion branches are persistent throughout the range of 85 con-
sidered. The effects of asymmetry are shown in Fig. 15 where
we present (u,8g) for 8, = —20 (deg) and for different values
of 3,, in degrees. Typical biased solution separation is ex-
hibited near the pitchfork point, as expected. Another in-
teresting feature is observed for high values of 5, where the
primary solution curve dissolves into two separate solution
branches near the initial pitchfork terminal point. Both of
these separate solutions are unstable. The stable solutions
are the two primary out-of-plane branches that emanate from
the initial separation point.

A plot of the roll angle (¢,35) is shown in Fig. 16 for the
same conditions used in Fig. 15. The pitchfork terminal point
can be clearly seen. Also we observe, as before, that solution
divergence and extreme sensitivity to initial conditions can
be expected for parameter values prior to the pitchfork bi-
furcation point. The mechanism responsible for this is the
existence of the inverted pendulum solution, (w — ¢), which
locally can attract solution branches, as explained before.

30 T l
20+ \‘

10}

0 0.5 1

ép

Fig. 16 Roll angle (deg) versus excess buoyancy (%W) for §, = —20 and
different values of 3, (deg)
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Fig. 17 Surge velocity (ft/sec) versus xgg(%L) for different values of 5, (deg)
and for 8, = 0

Variations in xg,: multiple connected pitchforks

A plot of the surge velocity (ft/sec) using xgp as the pri-
mary continuation parameter is shown in Fig. 17. For these
results, the dive plane angle 3, serves as the perturbation
parameter, and the rest of the parameters are held constant
at 85 = 2%W, zgg = 0.1 ft, and 8, = 0. Two distinct solutions
can be seen for 8, = 0; these are identified as predominantly
forward motion and nearly vertical ascent at the extremes
of the range of xggz, while for intermediate x5 values the
actual steady-state motion is a combination of the two. Which
solution is stable depends on the particular value of x¢p
(McKinley 1991, Aydin 1993). Both solutions are in-plane
solutions. As the dive plane angle 3, changes from 0 to —5
we observe that the two in-plane solutions come closer to-
gether and the distinction between predominantly forward
motion and nearly vertical ascent becomes more pro-
nounced. Further reductions in §, cause the two in-plane so-
lutions to become separated and we can observe the gener-
ation of an out-of-plane solution connecting them. This
corresponds to a couple of multiple connected pitchfork bi-
furcations at xgz values approximately —1.4%L and 0.6%L
as shown in the figure. It can be seen that for certain com-
binations of (xgp,0,) no stable in-plane solution exists, and
the steady-state motion is out-of-plane. The trivial solution
of the corresponding pitchfork bifurcation ceases to exist in
this case, and the only solutions remaining are the two sym-
metric secondary branches joining the two pitchfork points.

It should be pointed out that the numerical results cannot
be validated for the cases of very small surge velocity since
these correspond to high angles of attack which are outside
the range of validity of the hydrodynamic model. However,
since we unfold each bifurcation properly, we expect the above
results to be qualitatively correct throughout the ranges of
parameter variations that are presented. Typical results for
the asymmetric multiple connected pitchfork bifurcation are
shown in Fig. 18 for 8, = —20 deg and different values of 3,
in degrees. Comparing Figs. 17 and 18, we can see that the
effect of the asymmetry introduced by 5, # 0 is to deform
the solution set while its qualitative features remain the same.
The symmetric steady-state results of Fig. 17 are “shaken
up” to unfold the asymmetric results shown in Fig. 18. Nat-
urally, all solutions in this case correspond to out-of-plane
motions. Comparing the results presented in these two fig-
ures, we can easily establish which out-of-plane solutions will
result in predominantly vertical plane response and which
ones will allow large excursions in six degrees of freedom.
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Fig. 18 Surge velocity (ft/sec) versus Xga(%L) for &, =
different values of 3, (deg)

—20 (deg) and

Variations in zg: double pitchforks

As a final set of results, we present two typical plots (u,zgs),
i.e., using the metacentric height as the primary continua-
tion parameter. Results for 8, = 0 and different values of 3,
are shown in Fig. 19. A characteristic pitchfork bifurcation
is presented for two different values of zgp and for values of
8, beyond a certain critical value. For the pitchfork case, 8,
= —20 deg, the upper solution branch corresponds to the two
out-of-plane solutions, while the lower branch is the in-plane
predominantly forward motion. The effects of asymmetry on
this double pitchfork are presented in Fig. 20, where the graph
of (u,2¢g) is produced for 3, = —20 deg and different values
of 8,. The existence of two pitchforks at two distinet values
of the metacentric height is evident from this graph.

Bifurcation graphs
Symmetric cusp catastrophe curves and path formulations

Consider an equilibrium state of our system depending on
the two parameters (3,,,) and assume that, in some domain
of variation of these parameters, this equilibrium state does
not bifurcate. We can describe the system by a point in the
parameter space, that is, a point corresponding to the pa-
rameter value on the parameter plane (3,,8,). We consider a
division of this parameter plane into two open and disjointed
parts depending on whether the equilibrium state is stable
or not. In our case, since we are focusing on static bifurca-
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Fig. 19 Surge velocity (ft/sec) versus zgs (ft) for 3, = 0 and different values
of 3, (deg)

tions, this is equivalent to whether the number of equilib-
rium states changes or not. Thus we obtain on the plane of
parameters two distinct domains characterized by the num-
ber and stability properties of equilibrium states. Separat-
ing the two domains are the stability boundaries. Generi-
cally, upon projection of a smooth surface onto a plane, the
resulting contour has two kinds of singularities. These are
the cusp, a discontinuity in the first derivative, and a fold
which is smooth throughout. All other singularities disin-
tegrate under small movements of the surface and/or the
angle of projection while these two types are stable and per-
sist under small deformations of the mapping.

An analytic representation of the cusp curve can be found
by considering equation (49). We are seeking the locus for
those (\,y) points where the number of real solutions of (49)
jumps from one to three. To do this we have to solve

daf

fx,n) =0, o (x,\) =0 (563)

Explicit elimination of x from (53) produces the desired crit-
ical curve

0 0.05 0.15 0.2 0.25

0.1 0.3
2GB
Fig. 20 Surge velocity (ft/sec) versus zgp (ft) for 3, = —20 (deg) and
different values of 3, (deg)
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Fig. 21 Cusp singularity in (8,.3;) parameter plane (deg) and typical paths
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which takes the form of a cuspoid with its axis located along
the v = 0 axis. Under the smooth mappings (50) or (52), the
cusp curve (54) maintains its essential characteristics as
shown numerically in the following.

The cusp singularity in the (5,,3,) parameter plane is shown
in Fig. 21 for xqgz = —1%L, 85 = 2%W, and 2gg = 0.1 ft. This
corresponds to the same parameter values used in Figs. 6
through 13. For (5,,8,) combinations located outside of the
cusp, there exists only one steady state, while when crossing
the cusp boundary the number of solutions jumps to three.
Perpendicular paths through the cusp, i.e., changing §, for
a given §,, produce pitchfork bifurcation diagrams. It can be
seen that path P of Fig. 21 generates the corresponding
pitchfork diagram of Fig. 6. On the other hand, horizontal
paths through the cusp, i.e., changing 8, for a given 3§,, pro-
duce hysteresis bifurcation diagrams as the number of so-
lutions changes from one to three and back to one. A typical
example of a hysteresis path is denoted by H in Fig. 21 which
generates the solution set seen in Fig. 11.

Similar results can be drawn by considering the bifurca-
tions shown in Figs. 17 and 18. We can see that for §, = —20
deg, there exist two distinct pitchfork bifurcations for dif-
ferent values of xsp. These generate two cusp curves in the
(xgg,5,) parameter plane, one of which is shown in Fig. 22
Another point of interest is the turning point shown in Fig.
17 which is located at approximately xqz = —0.5%L for §,
= 0. This point is not necessarily associated with any bifur-
cation phenomena; it simply separates a region where the
number of in-plane solutions changes locally from two to zero.
In the diagrams shown in Figs. 17 and 18 there exist two
turning points, and a typical turning point locus is shown
in Fig. 22. It can be seen that, unlike pitchfork points which
form cusp singularities, turning points assume the shape of
a fold.

Asymmetric cusp curves

As a final prediction tool, we present the biased cusp sin-
gularities shown in Fig. 23. These represent the locus of
pitchfork points in the (3,,8,) parameter plane, parametrized
by an athwartship location of the center of gravity, yg, in
feet. It can be seen that the axis of the cusp is now located
off the 8, = 0 line. For a given value of 3, there exists a value
of yo which will produce a symmetric pitchfork bifurcation.
Physically, this occurs when the asymmetries associated with
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Fig. 22 Cusp and fold singularities in (xss,8,) parameter plane (%L.deg) for
5, = —20 deg

each of y; and 3, cancel out each other. This pitchfork is of
course very degenerate and it immediately changes into per-
turbed saddle-node diagrams like the ones presented before.

The complete bifurcation surface in the (8,,3,,85,%¢5,2¢8.Y¢)
parameter space would assume the form of a multidimen-
sional cusp hypersurface. Since direct visualization of this
is an impossible task, we can present only slices of the hy-
persurface as seen on (3,,3,), (8,,x¢p), and other two-param-
eter subspaces. These typical projections appear generically
in the form of cusp and fold singularities, as presented above.
The actual solution sets can be obtained by lifting the cor-
responding path through the associated singularity, and they
take the various forms of pitchfork sets seen in the previous
sections.

Concluding remarks

The problem of steady-state response of submersible ve-
hicles in free positive buoyancy ascent has been studied. Ap-
plications of the developed results include ballast control of
autonomous underwater vehicles and recovery procedures for
submarines under casualty conditions. The main parameters
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Fig. 23 Biased cusp singularities in the (5,,5,) parameter plane (deg) and for
different values of y; (ft}
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affecting response and stability were the stern plane deflec-
tions, amount of excess buoyancy, and the relative positions
of the centers of gravity and buoyancy. The main conclu-
sions of this work can be summarized as follows:

1. Motion is not always restricted in the vertical plane
even under port/starboard symmetric conditions. Com-
plicated out-of-plane solutions may be generated, and
the mechanism for their formation is the pitchfork sin-
gularity.

2. A complete characterization of steady-state solutions
in the vertical plane was achieved through the organizing
center of the winged cusp singularity. Continuation tech-
niques were utilized in conjunction with selected numerical
integrations, in order to provide all meaningful solutions in
six degrees of freedom.

3. This multidimensional pitchfork unfolds itself in a va-
riety of ways, depending on the particular two-dimensional
parameter plane. Such unfolding reported in this work in-
cludes pitchfork, separation, hysteresis, teardrops, and ter-
minal, multiple connected, or double pitchforks.

4. Cusp and fold singularities appear in two-parameter
design spaces which characterize the number of in-plane and
out-of-plane steady-state solutions.

5. An inverted pendulum stabilization due to coupling
between an unstable roll mode and stable sway/yaw modes
of motion can persist in certain cases, while it can be very
degenerate in others.

6. Numerical integrations suggested an extreme sensi-
tivity of the system to initial conditions and parameter val-
ues. This sensitivity of solutions was found to occur for pa-
rameter ranges which allowed for the inverted pendulum
stabilization to occur in the vicinity of a pitchfork bifurca-
tion point.

The primary benefit from such nonlinear dynamics stud-
ies is twofold. First, they demonstrate that certain phenom-
ena can be correctly identified and analyzed using rather
simplified hydrodynamic modeling. In fact all bifurcation
phenomena observed in this work occur at very low angles
of attack and drift, and the use of a constant coefficient hy-
drodynamic model is justified. Second, they can identify re-
gions in parameter spaces where sensitivity of solutions to
parameter values and initial conditions is to be expected. It
is precisely for these conditions that a more accurate hydro-
dynamic flow description is needed. The dynamic analysis
should then be repeated using the new refined hydrodynam-
ics until convergence. The end product would be a signifi-
cant enlargement of the vehicle submerged operation en-
velope as well as the level of confidence for the predicted
responses.
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